skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kukal, Meetpal S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Satellite‐based evapotranspiration (ET) products such as OpenET and GLEAM are widely used for drought monitoring and ecosystem‐climate studies. However, their ability to accurately capture interannual variability (IAV), a key requirement for such applications, remains under‐evaluated. Here, we assessed IAV in OpenET and GLEAM using an independent water balance approach that combined precipitation, discharge, and GRACE/FO total water storage anomalies across nine river basins in the western United States. Even after accounting for observational uncertainty through a Monte Carlo approach, both products systematically underestimate IAV relative to water balance‐based ET, by more than 60% on average. This result is further supported by long‐term tower measurements from AmeriFlux. We also demonstrated that ET sensitivity to climate and vegetation drivers in OpenET and GLEAM differ substantially from water balance‐based estimates. These findings reveal important limitations in satellite‐based ET products and highlight the need for improved IAV representation to support ecosystem and climate applications. 
    more » « less
    Free, publicly-accessible full text available October 16, 2026